

Small Hydropower – Definitions

Micro-hydro

Mini-hydro

Small-hydro Motive power (milling)

Pico-hydro Electrification

Isolated (Mini-grid)

Grid-connect

Experiences tend to be country specific

Nepal – Small Hydro Experience

- Traditional use of water mills 'ghatta' and irrigation canals.
- Diesel engines for agricultural milling made their way into the middle hills in 1970s.
- NGOs and local workshops developed low cost cross-flow turbines to substitute for diesel mills. Ag Dev Bank provided loans for microhydropower.
- Starting 1970s, the national utility built mini hydro projects as per the government's commitment to electrify remote district HQ.
- 1984 government deregulates private electricity < 100 kW, tariffs to be negotiated. Government provided subsidies to electricity producers.
- 1998 NEA agrees to buy all energy produced from projects smaller than 5 MW for the grid at a standard offer of around 5cents/kWh.

Current Status of Installations

Type	Total numbers	Installed capacity	Households served
Traditional 'ghatta'	25,000	12,000 kW	500,000
Improved 'ghatta'	650	1,200 kW	50,000
Micro-hydro milling	900	5,000 kW	270,000
Peltric Sets	600	600 kW	6,000
Micro-hydro electricity	300	4,200 kW	42,000
Mini-hydro (NEA)	35	8,000 kW	34,000
Small hydro- on the grid	12	40,000 kW	69,000

Factors behind early success of Micro-hydro

- Cultural basis for using small scale water power.
- Mechanized milling was a widespread need.
 Competitive with diesel.
- Strong local manufacturing base: low cost and easy repair.
- Financing available from Ag Dev Bank from early on.

Subsidies

- Mills needed no subsidies charging 5% of value of milled product generates sufficient revenue.
- Improved 'ghatta' need NGO support for promotion in remote areas but not for hardware.
- Electric projects need subsidies to arrive at similar prices as urban consumers (9-12 cents/kWh).
- Subsidies justified because micro-hydro systems can also provide employment and community benefits to those who can not afford a home connection.
- Subsidies give the promoter a seat at the table to control quality and put in regulations and can be effective in scaling up.

Problems with the sector

- Most projects are working, but limited scaling up.
- Milling saturated in more accessible areas but very sparse in remote districts. Market had reached its limit.
- National utility built isolated mini and small hydro working at low capacity, over staffing, unable to cover O&M from revenue. Not responsive to needs of users.
- Technical support to projects in remote areas inadequate.
- No standardization of equipment. Subsidies not able to leverage quality control. Large % of subsidies appropriated by manufacturers.
- Many projects technically functioning but financially failing.
 - Low load factor.
 - Oversupply of turbine mills.
 - Poor management.
 - Inability to increase tariff in community projects to cover inflation.

New Modalities for Promotion

- Community-based (REDP/UNDP, NGOs)
 - Participatory (including role of all users and women),
 - Equitable (access extended to whole community),
 - Development of social capital, MHP and entry point for holistic development,
 - Around 20 projects, 400 kW/yr.

New Modalities....

Entrepreneur-led model.

- DANIDA support,
- Area Support Centers, strong emphasis on productive end uses,
- National subsidy plan (\$1,000/kW produced, tariff reduced from 18 cents 12 cents/kWh),
- Efficient; lower soft support costs,
- Clear ownership, financial sustainability in the long run,
- Especially suitable for commercial areas,
- Around 500 kW/yr projected.

New modalities....

- Grid-connect IPP projects
 - Standard PPA offer by national utility (4.5 cents/kWh wet season and 6.4 cents/kWh in dry season) for projects up to 5 MW.
 - 20 projects undergoing feasibility studies, 3
 with signed PPAs, 2 under construction.
 - Hypothesis: this will accelerate grid connection to new consumers.

Challenges Ahead – Scaling up

- Continuity of government subsidy for micro-hydro projects.
- Productive End-Uses for isolated projects
- Standardization of equipment. Technology transfer. Higher efficiency for larger projects.
- Continuity in utility policy for grid-connect IPP projects and ability of national utility to purchase produced energy.
- Creating financing mechanisms for the larger projects.

MHP Mini-grid End-Uses Ladder

Areas	I	II	III	IV	V
Road access	After 20 yrs	Within 20 yrs	Not for 10 yrs	After 20 yrs	Ag. roads exist
HEATING COOKING				Hot showers, Jacuzzis Water heating, cooking. Room heating.	
ENTERPRISE	Telecommunic ation.	Hand-made paper, herb distillation, drying fruits, mushrooms etc. Rural telecom.	Battery charging. Noodle making. Bakeries. Sawmill, metal workshop. Rural telecom.	Battery charging. Noodle making. Large Bakeries. Sawmill, metal workshop. Rural telecom.	Pump irrigation. Cold storage. Cheese, jams. Battery charging. Noodle making. Bakeries. Sawmill, metal workshop. Rural telecom.
LIGHTING RADIO/TV	Can't afford	Handicrafts Shops, commerce Lights, TV, radio	Video parlor, Photo studio Handicrafts Shops, commerce Lights, TV, radio	Video parlor, Photo studio Handicrafts Shops, commerce Lights, TV, radio	Video parlor, Photo studio Handicrafts Shops, commerce Lights, TV, radio
MILLING	yes	yes	yes	Yes	extensive
↑ Likely MHP End-uses	Remote; subsistence economy; low ag. production.	Remote; natural resourc e-based export;, low ag. production.	Relatively remote; low ag. production; ext income from overseas, Govt/NGO salaries.	Remote; low ag. production; conservation zones, income from tourism,.	Non-remote areas, surplus and niche agricultural production

Lessons Learned

- Milling is a natural first step. Big social benefits. Electricity can bring about end-use development if other infrastructure is already in place, roads and telecom.
- Government/large utilities are not suitable to build and operate small hydro.
- Subsidies can be suitable if they are available long term. But must be well designed and leverage quality control. Irregular subsidies are worse than no subsidies.

Lessons Learned...

- Community projects need a substantial amount of support but end result is more than just the project.
- Local manufacturing base is important simple technology and low cost for small projects.
 Efficiency is critical and import is a good option for larger projects.
- Supportive government policy and development bank financing is crucial.